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Abstract It is well known that one can collect the coeffi-
cients of five (or more) homographies between two views
into a large, rank deficient matrix. In principle, this im-
plies that one can refine the accuracy of the estimates of the
homography coefficients by exploiting the rank constraint.
However, the standard rank-projection approach is imprac-
tical for two different reasons: it requires many homogra-
phies to even score a modest gain; and, secondly, correla-
tions between the errors in the coefficients will lead to poor
estimates.

In this paper we study these problems and provide solu-
tions to each. Firstly, we show that the matrices of the ho-
mography coefficients can be recast into two parts, each con-
sistent with ranks of only one. This immediately establishes
the prospect of realistically (that is, with as few as only three
or four homographies) exploiting the redundancies of the
homographies over two views. We also tackle the remain-
ing issue: correlated coefficients. We compare our approach
with the “gold standard”; that is, non-linear bundle adjust-
ment (initialized from the ground truth estimate—the ideal
initialization). The results confirm our theory and show one
can implement rank-constrained projection and come close
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to the gold standard in effectiveness. Indeed, our algorithm
(by itself), or our algorithm further refined by a bundle ad-
justment stage; may be a practical algorithm: providing gen-
erally better results than the “standard” DLT (direct linear
transformation) algorithm, and even better than the bundle
adjustment result with the DLT result as the starting point.
Our unoptimized version has roughly the same cost as bun-
dle adjustment and yet can generally produce close to the
“gold standard” estimate (as illustrated by comparison with
bundle adjustment initialized from the ground truth).

Independent of the merits or otherwise of our algorithm,
we have illuminated why the naive approach of direct rank-
projection is relatively doomed to failure. Moreover, in re-
vealing that there are further rank constraints, not previously
known; we have added to the understanding of these issues,
and this may pave the way for further improvements.

Keywords Homography · Rank constraint · First order
perturbation

1 Introduction

The homography is a projective linear mapping, a special
case of which is the mapping between the images of cor-
responding points, when those are the image points of 3D
planar “real world” points. Homographies have many appli-
cations in computer vision and photogrammetry: the transfer
of points from one image to another (registration, construc-
tion of panoramas etc.), and the extraction of camera and
planar patch relative poses (robotics, photogrammetry etc.).
This paper is concerned with jointly estimating several ho-
mographies over two views by exploiting rank constraints
in a way that extends/improves on the well established fact
that homographies can be related by a rank four constraint
(Shashua and Avidan 1996) (see Sect. 3).
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Rank Constraints for Homographies

Rank projecting noisy data1, onto a low rank subspace as a
form of “denoising” was studied in Chen and Suter (2006).
Assuming i.i.d. Gaussian noise, the error, still residing in
the low-rank approximation matrix, depends on the ratio be-
tween the degree of freedom of the rank constrained matrix
and the degree of freedom of the matrix without enforcing
the rank constraint. The latter is simply the number of co-
efficients of the matrix. The former depends on the matrix
dimensions and on the rank (it is typically much lower in
size).

Thus, if we exploit the above mentioned rank four con-
straint, the best, on average, we can hope for (as the number
of homographies approaches ∞), is that the error in the ho-

mographies coefficients will be reduced by a factor of
√

4
9

(Chen and Suter 2006). That is, a one third (33%) reduction
in the average error in the coefficients of the homographies
can be gained. However, a large number of homographies
are required to gain any significant denoising, let alone close
to the asymptotic (infinite number of planes) value cited
above. Moreover, to actually gain any denoising from such
a recovered subspace, more than four planes are required.
There are many image pairs where it would be difficult to
find more than four planes (of any significant size).

The real situation is even worse than this. The refinement
starts from the estimated homography parameters and, even
if the image measurements that were used to estimate these
parameters were corrupted with i.i.d. Gaussian noise, the
same can not be said about the parameters themselves. That
is, the homography estimation suffers from heteroscedastic
noise (Leedan and Meer 2000): The heteroscedastic noise
arises due to the linearization inherent in the direct lin-
ear transformation (DLT) algorithm (Hartley and Zisserman
2003).

Without tackling these issues, it is not possible to achieve
even the modest gains reported in Chen and Suter (2006)
(i.e., using real data rather than synthetic data), let alone
come close to the theoretical 33% gain for large numbers
of homographies with i.i.d. Gaussian noise in their coeffi-
cients.

The purpose of this paper is to investigate these issues. In
order to find a useful approach for so few planes, we study
the special structure of the homography. Thus in the first part
of this paper, we are particularly interested in how to obtain
rank constraints from the homographies of ≤ 3 planes. We
can do this because the rank-four constraint is too general.
The collection of homographies has even more structure.
Starting from the fact that the homographies can be shown

1Generally, the measured data will not maintain the low rank predicted
from the noise-free quantities.

to lie in a rank-three affine subspace, we show how three ho-
mographies suffice to obtain useful constraints: as it turns
out that only a subset of dimension-three affine subspaces
are possible homographies. More importantly, we show that
there is even more exploitable structure and that the ho-
mography coefficients can be shown to lie in the “combi-
nation” of two rank-one matrices and thus more constraints
are available to reliably improve the homography accuracy,
as few as three planes.

In order to overcome the difficulty, associated with the
heteroscedastic noise in the homography parameters, we
use estimates of the covariances, obtained by employing
first order approximation techniques, leading to an effective
weighted low-rank approximation.

Our solution is inherently iterative. Likewise, the “gold
standard” approach of non-linear optimization (bundle ad-
justment) is also iterative. With iterative approaches there
are two crucial issues—convergence and initialization. For
convergence, we show that convergence (to a local mini-
mum) is guaranteed. The issue of local vs global minimum is
linked to the issue of initialization. We show, experimentally,
that our approach generally converges to a very good solu-
tion, using at most two starting points, that we recommend
as alternative initializations. Indeed, we show results that are
very competitive with the “gold standard” (even when the
latter is initialized with the ground truth—in general a better
starting point than one would normally be able to use).

Related Work

We note that Zelnik-Manor and Irani (1999a, 1999b, 2002)
have studied a related problem. They define the “relative ho-
mographies” of two planes over multiple views and show
that these also reside in a dimension-four subspace but then
go on to show that homologies can be scaled to reside in a
dimension-three subspace. Furthermore, they show that the
dimension four constraint also holds for the case of multiple-
plane-over-multiple-view. Zelnik-Manor and Irani contrast
their homology constraint with the homography constraint
and emphasize the claimed advantage of the former in re-
quiring only three planes rather than four (Zelnik-Manor and
Irani 2002). A significant part of the contribution of our pa-
per is that we show this is somewhat misleading as our ho-
mography rank-constraints over two views can indeed be ap-
plied to less than four planes. Indeed, although we do devise
and implement an algorithm to demonstrate practical ex-
ploitation of rank-constraints with very few homographies:
a major contribution is to expose and study the impediments
to exploitation of rank-constrained homography denoising.

Rank constraints in computer vision tasks also arise in
the factorization approach to the problem of structure from
motion (SFM), under the assumption of an orthography
(Tomasi and Kanade 1990, 1992). This includes the setting
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of affine camera models (Poelman and Kanade 1994, 1997;
Hartley and Zisserman 2003). The SFM problem can be re-
duced to a rank-one factorization problem, by using a ref-
erence frame (Aguiar and Moura 1999a, 2003). Face recog-
nition is another prominent setting where rank constraints
can be exploited: It was proved, by using spherical harmon-
ics, that “all Lambertian reflectance functions obtained with
arbitrary distant sources lie close to a 9D linear subspace”
(Basri and Jacobs 1999, 2003; Ramamoorthi and Hanrahan
2001; Ramamoorthi 2002).

The standard approach to exploiting rank constraints in-
volves computing an SVD. In order to overcome the lim-
itations of batch-based methods, like the SVD, a sequen-
tial method was proposed to do the factorization (Morita
and Kanade 1997). A similar technique was employed to
deal with missing data problem with low rank matrix (Brand
2002).

Heteroscedastic noise, requires more sophisticated ap-
proaches: weighted factorization (Aguiar and Moura 2000,
2003) was proposed to deal with different-level noise; and
directional noise was further investigated in Irani and Anan-
dan (2000), Anandan and Irani (2002). In Aguiar and Moura
(2000, 2003) and Anandan and Irani (2002), Irani and Anan-
dan (2000), the noise was assumed to be frame independent
or approximately frame independent. That is, in Aguiar and
Moura (2000, 2003), the noise of one feature point is as-
sumed to be i.i.d. Gaussian, across the frames (different fea-
ture points have a different noise level); and in Anandan and
Irani (2002), Irani and Anandan (2000), the directional noise
of one feature is characterized by its covariance matrix and
this covariance matrix remains unchanged across the frames
(different feature points have a different covariance matrix).
In Irani and Anandan (2000), Anandan and Irani (2002),
Irani and Anandan showed how to approximately reduce
frame-dependent directional noise to be frame-independent.

Organization of the Paper

In Sect. 2, we briefly review the rank four constraint. In
Sect. 3, we show how to exploit further structure with homo-
graphies over two views. In Sect. 4, we first review the (nor-
malized) DLT algorithm for homography estimation, and
then propose how to jointly estimate ≥ 3 homographies. In
Sect. 5, simulations and experiments are presented.

2 Rank-Four Constraint

First, we cite the Result 12.1 on p. 312 of Hartley and Zis-
serman (2003), which describes the relationship between a
homography and the related projection matrices. Suppose
the projection matrices for two views are P = [I|0] and
P′ = [R|t]. The ith plane is defined by πT

i X = 0, with

[πi]4×1 = [−vT
i 1]T 2 and [X]4×1 as the homogeneous rep-

resentation of 3D points on the plane. The homography in-
duced by the plane is, with a matrix representation:

Hi ∼ R + tvT
i (1)

Thus, with the knowledge of R and t,3 the homography
of the ith plane is characterized by the vector vi . Note that
this is a particular representation (we call it the canonical
representation): all matrices related to this matrix by a scale
are also representations of the same homography. In some
applications, we need to relate the matrix homography Hi

to its vector form hi .4 Suppose

Hi =

⎡
⎢⎢⎣

h1,i h2,i h3,i

h4,i h5,i h6,i

h7,i h8,i h9,i

⎤
⎥⎥⎦

hi is defined to be hi = [h1,i h2,i . . . h9,i]T .
The matrix H = [h1 h2 . . . hn]9×n, whose columns are

homographies in canonical form, can be expressed as the
following, in terms of R, t, and {vi}:
[H]9×n = [vec(RT )]9×1[1 1 . . . 1]1×n

+ [Ut]9×3[v1 v2 . . . vn]3×n (2)

where vec(M) is the column-first vectorization form of ma-
trix M, and

[Ut]9×3 =

⎡
⎢⎢⎣

t1I3

t2I3

t3I3

⎤
⎥⎥⎦

9×3

(3)

Homographies, calculated according to (1) (with the
knowledge of R, t and {vi}), are embedded in a dimension-
three affine subspace. However, homographies are only de-
fined up to a scale factor, and in practice we estimate the ho-
mographies from image measurements (not directly from R,

2Here, we use πi = [−vT
i 1]T , instead of πi = [vT

i 1]T (Hartley and
Zisserman 2003). Consequently, Hi ∼ R + tvT

i in (1), not Hi ∼ R −
tvT

i .
3Here, and throughout this paper, we use the notations of R and t. For
calibrated images these are the rotation and translations of the camera.
However, everything works also for uncalibrated images where R and
t are then related to the rotation and translation through the 3 × 3 in-
vertible calibration matrix. For the calibrated case, where we refer to
the fundamental matrix, one should replace it with the essential matrix.
4In this paper, a homography will be represented either as a 3 × 3 ma-
trix or as a 9 × 1 vector. We will use Hi or hi for a matrix homography
or its vectorized form, respectively. When its form can be determined
from the context, we only use the term of “homography”, which may
be a matrix or a vector. H will denote the matrix that have several vec-
tor homographies as its columns, as defined below. H is referred to as
“homography matrix”.
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t and {vi}), and thus we know the homography up to an un-
known scale (and perturbed with noise). We can choose to
select a special matrix representation for the class of ma-
trices representing the homography—for example, we usu-
ally normalize the homography so that ||Hi ||Frobenius = 1.
However, any such choice will lead to different (and un-
known) scale factors between the chosen representative and
the homography matrix defined by (1). In effect, this means
that each column of the homography matrix H, in practice,
will be scaled up with a different (and unknown) factor. As
a consequence, we can only calculate the dimension-four
subspace, rather than the dimension-three affine subspace.
However, the homography coefficients do lie in a partic-
ular restricted set of dimension-three affine manifolds and
this fact can be exploited (as we show next). Thus, although
Zelnik-Manor and Irani (1999b, 2002) emphasized the lim-
itation of homography-rank constaints (in being only ap-
plicable to more than four planes in contrast to their homol-
ogy based constraints), we demonstrate a way around this
limitation: as we can demonstrate effective denoising with
as few as three planes/homographies.

3 Calculation of the Dimension-Four Subspace

In this section, we show how to exploit the special struc-
ture of the homography from (1) and (2). First, we start with
the well known dimension-four subspace from ≥ 4 homo-
graphies. We then show how to extract structure from less
than four planes. More importantly, we reveal a previ-
ously unreported fact that the homography matrix can
be expressed as the “combination” of two rank-one ma-
trices. (Note, here, the term of “combination” has a special
meaning, as will be explained in Sect. 3.3.) This fact can
be employed to design an iterative algorithm for enforcing
these quite stringent rank constraints.

3.1 Subspace Constraint from ≥ 4 Planes

This is the well established approach and it is included here
for completeness.

Suppose that n (≥ 4 ) planes are observed over two views.
The rank of the homography matrix H is four (Shashua and
Avidan 1996), as shown above. In other words, all the vector
homographies (columns of H) are restricted to a dimension
four subspace.

All we need do, in principle, is to use the SVD (Golub
and Loan 1996) to project the columns of H onto the basis
formed by the left singular vectors associated with the four
largest singular values. However, as mentioned above, this
will not be optimal if the noise in the homography coeffi-
cients is heteroscedastic. Moreover, to achieve any reason-
able “denoising” effect, much greater than four planes are
needed in practice.

3.2 Subspace Constraint from ≥ 3 Planes

In this section, we first show it is possible to calculate the
dimension-four subspace from only three homographies.

3.2.1 Calculation of the Direction of Translation t

The crux of this, and subsequent subsections, is that we
concentrate on estimating the direction, of the camera pose
translation t, then solving for the remaining structure.

From the structure of [Ut]9×3 in (3), one can see that only
a restricted set of affine spaces are possible—regardless of
the values of t there are directions in R9 that are not in the
span of the columns of [Ut]9×3. From (2), one can see that
the dimension-3 subspace [Ut]9×3 is determined by the di-
rection of t. In the following, we show that the direction of
t can be calculated from only three homographies.

(a) First, construct a 3C2
n × 6 matrix M from n homogra-

phies.
From two homographies with matrix representations Hi

and Hj , a 3×6 matrix Mi,j is constructed as in Appendix A.
For n (n ≥ 3) homographies, we stack all the pairwise ma-
trices Mi,j for i < j , obtaining a 3C2

n × 6 matrix [M]3C2
n×6:

[M]3C2
n×6

= [
MT

1,2 . . . MT
1,n MT

2,3 . . . MT
2,n . . . MT

n−1,n

]T

(4)

with Mi,j ∈ R3,6 defined in Appendix A.
(b) It can be shown that rank(M) = 3, except in degener-

ate cases, see Appendix B. Thus, except in these degenerate
cases, the right null-space of M is of dimension 3.

(c) Now we show how to calculate the vector t from ma-
trix M in (4).

Construct the 3 × 9 matrix [S]3×9 from the null subspace
of M:

[S]3×9 = [N1 N2 N3]3×9 (5)

where [N]6×3 is the basis vectors spanning the null-space of
M and each 6×1 column of N is arranged as a 3×3 matrix:

Ni =
⎡
⎣

n1,i n4,i n5,i

n4,i n2,i n6,i

n5,i n6,i n3,i

⎤
⎦ (6)

In the noise free situation, S is rank deficient and has a
rank of two; and t is the left null vector of S, as will be
proved in Appendix C. In practice, the left singular vector
of S, associated with the least singular value, is taken as the
solution of t.

So far, we have shown how to calculate t from ≥ 3 homo-
graphies.
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In the analysis above, we need to calculate the dimension-
three null subspace of M. If the homographies are noise
free, there exists such a null subspace. However, error is
inevitably introduced to the homographies, due to the pres-
ence of noise in feature points. Faced with this, we can, in
principle, use the SVD to calculate this null subspace: tak-
ing the three right singular vectors that are associated with
the three smallest singular values.

However, heteroscedastic noise is introduced in the ma-
trix M. Suppose the noise in M has a covariance matrix
CM. We first employ the bilinear approach (Chen 2004;
Chen and Suter 2007) or the AP approach (Manton et al.
2003) to calculate the CM weighted rank-three approxima-
tion matrix: M3

C
5 (Chen 2004; Chen and Suter 2007). Then,

a reasonable solution of N is the null subspace of this M3
C.

The characterization of CM is given in Appendix E.

3.2.2 Calculation of the Fourth Basis Vector of the
Dimension Four Subspace

Without loss of generality, suppose ‖t‖Frobenius = 1. From
(2), we define H† = (I9 − UtUT

t )H as the projection on the
orthogonal complement of span(Ut), where Ut is defined
in (3). It can be easily seen that rank(H†) = 1, because each
column of H†, h†

i , is parallel to (I9 − UtUT
t )vec(RT ). The

columns h†
i are different from each other up to an unknown

scale, because the canonical form of homographies, as in (1),
can not be calculated in practice. In the noise free case, the
fourth vector of the dimension four subspace can be taken as
any column of H†. Note that the fourth vector calculated this
way is not parallel to vec(RT ), but parallel to its orthogonal
complement to the subspace spanned by Ut.

3.3 “Combination” of Two Rank-One Matrices

In this subsection, we further study the special structure of
the homography matrix: The new result is that we derive a
constraint expressed as the “combination” of two rank-
one matrices. The starting point is also (2). We rewrite this
formula as

H = H′ + H′′ (7)

where H′ and H′′ are the first and second parts of the
right side of (2), respectively. Obviously, the former part
has a rank of one, i.e., it can be factored as H′ = udT .
As for the second part, we rearrange each column of H′′,
h′′

i = [h′′
1,i h′′

2,i . . . h′′
9,i]T , as a 3 × 3 matrix

H′′
i =

⎡
⎣

h′′
1,i h′′

2,i h′′
3,i

h′′
4,i h′′

5,i h′′
6,i

h′′
7,i h′′

8,i h′′
9,i

⎤
⎦

5Here, for a concise notation, the subscript M of CM is omitted. This
also applies to CH in (8–10).

and juxtapose them into a 3 × 3n matrix: Ȟ′′ = [H′′
1 H′′

2

. . . H′′
n]3×3n. Due to the fact that H′′

i = tvT
i , [Ȟ′′]3×3n can

be factored as [Ȟ′′]3×3n = [t]3×1[vT
2 vT

2 . . . vT
n ]1×3n = tvT ,

then it is obviously a rank-one matrix.6 For clarity, we define
a function f for denoting the rearrangement of the matrix
H′′ as Ȟ′′, as f : R9,n → R3,3n with f (H′′) = Ȟ′′. Sim-
ilarly, define the inverse of f , f −1 : R3,3n → R9,n with
f −1(Ȟ′′) = H′′.

We use the word of “combination”, because H is not
the direct sum of two rank-one matrices. It is the sum of
two parts, each part can be written in rank-one form by the
processes of re-ordering the coefficients as described above.

How can this property be utilized in the estimation of ho-
mographies? With the knowledge of H′, we can calculate
Ȟ′′ as the rank-one approximation of f (H−H′). Vice versa.
This suggests we iteratively update H′ and H′′ while holding
H′′ and H′ constant, respectively. Further, these two steps
can be turned into computing one of u, d, t, and v while
holding the other three constant.

Assuming the error in the homography matrix is charac-
terized by the covariance matrix [CH]9n×9n, the homogra-
phy subspace estimation problem is to estimate u, d, t, and
v, by minimizing the following CH weighted objective func-
tion:

‖H − udT − f −1(tvT )‖C (8)

where the covariance matrix CH
7 is analyzed in Appen-

dix D.
Thus we alternately compute one of u, d, t and v:

u = arg min
x

‖H − f −1(tvT ) − xdT ‖C

d = arg min
x

‖H − f −1(tvT ) − uxT ‖C

t = arg min
x

‖f (H − udT ) − xvT ‖C

v = arg min
x

‖f (H − udT ) − txT ‖C

(9)

All of these four steps can be abstracted as the following
CH weighted minimization problem:

x̂ = arg min
x

‖B − axT ‖C (10)

The solution of (10) can be found in Chen (2004), Chen and
Suter (2007). Because in each step of (9), the objective func-
tion defined in (8) decreases, the iterations will converge to

6It is important to be aware that the reshaping of the coefficients does
not produce exploitable rank constraints. A general 9 × n matrix has
just as many degrees of freedom as a general 3 by 3n matrix. The
reshaping exposes a rank constraint that shows the coefficients have
less than 9n degrees of freedom.
7In order for a simple equation, we use C instead of CH, for example
in (9), when no ambiguity is resulted in.
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a local minimum. An algorithm, based on the analysis here,
will be presented as the Core algorithm in Sect. 4.2.

Note that, because tvT and udT are two components of
H, they should be computed pair by pair, i.e., t and v should
be computed one after another and this also applies to the
pair of u and d. Please also note that the order between t
and v (or between u and d) does not make any difference.

Before concluding this section, let us examine the de-
grees of freedom. First, we recall that a rank r m × n ma-
trix has a degree of freedom of mr + nr − r2 (Chen and
Suter 2006). Since the 9 × n homography matrix H is of
rank four, its degree of freedom is 9 × 4 + 4n − 4 × 4,
i.e., 4n + 20 for n ≥ 4. From (7) that H can be decom-
posed as a rank-one 9 ×n matrix and a rank-one 3 × 3n ma-
trix, the degree of freedom of the homography matrix H is:
(9+n−1)+(3+3n−1), i.e. 4n+10 for n ≥ 2. There exists
a difference of 10 degree of freedom, under these two con-
straints. This is significant for small n (e.g., for n = 4 the ra-
tio is 26

36 = 0.72 indicating a potential average improvement
of 28%). In terms of improving existing rank constraints, we
note the similarity in what we have just achieved with homo-
graphies to the work of (Aguiar and Moura 1999a, 1999b,
2000, 2001, 2003) in improving rank-constrained structure
from motion: reducing the rank four (or rank three) SFM
problem to a rank-one problem.

Careful counting of the overall degrees of freedom shows
that we still have not fully exploited all constraints and thus
further improvement may be possible (but we have yet to
discover how to expose and exploit such further reductions
in the degrees of freedom).

4 Algorithms for Homography Refinement

The previous sections exposed possible ways to refine ho-
mography coefficients and hinted at algorithmic issues. In
this section we provide detail on practical approaches.

4.1 DLT, Normalized DLT and Subspace Constrained DLT

We first review the normalized direct linear transform (DLT)
algorithm (Hartley and Zisserman 2003) for homography es-
timation. For simplicity, we suppose the third coordinate of
the homogeneous representation of a point is one.

Homography

Hk =
⎡
⎣

h1,k h2,k h3,k

h4,k h5,k h6,k

h7,k h8,k h9,k

⎤
⎦

maps points x = [x1 x2 1]T of the kth plane in the first
view on x′ = [x′

1 x′
2 1]T in the second view: x′ ∼ Hkx.

From the cross product x′ × Hkx = 0, each pair of the
matches, {xi ,x′

i}, produces a 3 × 9 matrix:

Ai =

⎡
⎢⎢⎣

0 −xT
i x′

2,ix
T
i

xT
i 0 −x′

1,ix
T
i

−x′
2,ix

T
i x′

1,ix
T
i 0

⎤
⎥⎥⎦

3×9

(11)

which satisfies Aihk = 0. For p (p ≥ 4) pairs of matches,
stack all Ai (1 ≤ i ≤ p) as

[A]3p×9 = [AT
1 . . . AT

p ]T (12)

Ahk = 0 holds. hk is taken as the right singular vector of
A, associated with the least singular value. This is the DLT
algorithm (Hartley and Zisserman 2003) for homography es-
timation.

In Hartley and Zisserman (2003), a normalization step is
recommended. It consists of a translation and a scaling, so
that the centroid of the transformed points is the origin (0,0)

and their average distance from the origin is
√

2. Suppose
the centroid of the original points is (c1, c2) and their aver-
age distance to this centroid is l. The normalization trans-
form T is
⎡
⎢⎢⎣

1
l

0 − c1
l

0 1
l

− c2
l

0 0 1

⎤
⎥⎥⎦ (13)

Similarly, a normalization transform for the second view, T′,
can be calculated.

The normalized DLT algorithm takes the DLT algorithm
as the core algorithm. First, calculate the transformed points
for each view and their associated normalization transforms
T and T′. Second, using DLT, calculate the homography H̃k

from the normalized matches. Finally, in the denormaliza-
tion step, set

Hk = T′−1 H̃kT (14)

as the homography for the plane in the original views.
When the dimension-four subspace is known, as

U ∈ R9,4, the subspace constrained DLT solution is calcu-
lated the following way: First, calculate x̂ as the solution
of

AUx = 0 (15)

by standard smallest singular value way. Second, take the

h = Ux̂ (16)

as the solution of the homography, which is obviously em-
bedded in the subspace U.
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4.2 Algorithm for Jointly Estimating ≥ 3 Homographies

The algorithm presented here is based on the analysis in
Sects. 3.2.1, 3.2.2 and 3.3.

Algorithm

1. Taking all the feature points in the n planes as a whole
set, calculate the normalization transforms T and T′, for
the first view and the second view respectively.

2. Calculate the translation t for the normalized views.
(a) Calculate each homography, hi , using the normal-

ized DLT algorithm.
(b) Using (4), calculate the matrix M from hi .
(c) Calculate N, the dimension-three null subspace of

M.
(d) From N, calculate the matrix S, according to (5); and

calculate t as the left null vector of S.
3. From the normalized planes, calculate the dimension four

subspace U of the homographies and refine using the
rank-one parts. This step (the “Core algorithm”) is ex-
plained further in the following. At the end of this step,
we have improved estimates of t and u from which we
immediately have a basis for the subspace.

4. For each normalized plane, calculate its subspace-U con-
strained homography, by (15) and (16).

5. Calculate the denormalized homographies for all the
planes, as in the denormalization step (14) of the nor-
malized DLT.

4.2.1 Core Algorithm

In this subsection, we concentrate on an iterative algorithm
for step 3—we call this the “Core algorithm”. This step is
based on formula (9):

Core algorithm (with an initial estimate of t = t0 as its
input)

1. Initialize by calculating u0, d0 and v0, in turn. First, u0

and d0 are the solution of minimizing ‖u0(d0)T − (I9 −
UtUT

t )H‖Frobenius, as can be solved by the SVD (Golub
and Loan 1996). t0 is solved as the solution of minimiz-
ing ‖f (H − u0(d0)T ) − t0v0T ‖Frobenius, with f defined
in Sect. 3.3.

2. Iterate until convergence: Compute ti+1, when holding
ui , di and vi constant. Ditto for computing vi+1, ui+1,
and di+1 in turn.

Note that we use superscripts to indicate iteration indices
and that the vectors of ui , di , ti and vi are estimates of those
quantities (without superscripts) in Sect. 3.3.

We find that, in a few cases, the Core algorithm is
trapped in a non-global minimum, measured by (8). We
overcome this problem by starting from two different ini-
tial t0: One is the estimate used in the proposed algorithm

and another is the left null vector of the associated Funda-
mental matrix. The subspace, which fits the homographies
better, i.e., has a smaller objective function defined in (8), is
selected as the solution.

5 Experimental Results

In this section, we show the gain of jointly estimating ≥ 3
homographies: compared with separately estimating each
homography by using the normalized DLT algorithm. We
also compare with the “gold-standard” bundle adjustment
(BA) (Triggs et al. 2000).

The original BA algorithm tries to simultaneously esti-
mate the projection matrices and 3D feature points so that
they minimize the sum of the squared difference between
the observed 2D feature points and their 2D reprojected po-
sitions (calculated from estimated projection matrices and
estimated 3D feature points). Here, we use a variant of the
BA algorithm for jointly estimating several homographies
over two views. The starting point is also (1). The homogra-
phies can be determined from R, t, and {vi}:

{R̂, t̂, {v̂i}} = arg min
R,t,{vi }

n∑
i=1

pi∑
j=1

(
d(x′

j , (R + tvT
i )xj )

2

+ d(xj , (R + tvT
i )−1x′

j )
2) (17)

where pi is the number of feature points in the ith plane, and
d(x,y) denotes the Euclidean distance between inhomoge-
neous points represented by x and y.

By using the Levenberg-Marquardt method (Press et al.
1992), the optimal solution of R, t, and {vi} can be found,
given an accurate initial starting point. However, we also
find that, when the noise levels are different in different
planes, the performance of the bundle adjustment deterio-
rates. In order to overcome this problem, we use:

{R̂, t̂, {v̂i}} = arg min
R,t,{vi }

n∑
i=1

pi∑
j=1

(
d(x′

j , (R + tvT
i )xj )

2

σ 2
i

+ d(xj , (R + tvT
i )−1x′

j )
2

σ 2
i

)
(18)

where σi is estimated from the DLT homographies: σi =√∑pi
j=1(d(x′

j ,Ĥixj )2+d(xj ,Ĥ′
ix

′
j )2)

2(ni−4)
(and holding fixed during it-

eration).
We compare three algorithms for estimating the homo-

graphies: normalized Direct Linear Transform (referred to
simply as DLT), the proposed algorithm (referred to as “pro-
posed” and given the mnemonic “pro”), and Bundle Adjust-
ment (referred to as BA). In actual fact, taking into account
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the two possible objective functions, and the three possible
initializations of BA, we have 6 variants of BA. Those using
the objective of (17) have their mnemonic 1 as suffix, and
those using (18) have mnemonic 0 as suffix. The three ini-
tializations are: with the ground truth of R, t, and {vi} as the
initial point (mnemonic GT), with the result from the pro-
posed algorithm, and with the result of the DLT. In summary
we have the following 8 combinations:

• DLT
• proposed
• variants of BA:

– those using objective (18)
∗ using DLT as starting point BA-DLT-0
∗ using proposed algorithm as starting point BA-pro-0
∗ using the ground truth as starting point BA-GT-0

– those using objective (17)
∗ using DLT as starting point BA-DLT-1
∗ using proposed algorithm as starting point BA-pro-1
∗ using the ground truth as starting point BA-GT-1

Of course, BA-GT-0 and BA-GT-1 are not practical variants
of the algorithms. However, they do provide an indication of,
in some sense, the best one can do with bundle adjustment as
the issue of how to initialize within the basin of attraction of
the true solution should be side-stepped. The variants BA-
DLT-0 and BA-DLT-1 essentially represent current “state
of the art” (and practical) yardsticks. As we will demon-
strate, our algorithm provides a competitive result with these
yardsticks and close to the best yardstick (BA starting from
the ground truth). Furthermore, we show that by initializ-
ing BA from our algorithm (BA-pro-0 and BA-pro-1), one
does generally better than the current practical yardsticks
BA-DLT-0 and BA-DLT-1.

5.1 Validation Using Known Ground Truth

5.1.1 Synthetic Data

Experimental setting

• Cameras Suppose there exists a 3D coordinate system
for the world. The first camera is randomly positioned on
the z = 0 plane, at (x, y,0) that is uniformly distributed
in (0 ∼ 3,0 ∼ 3,0). The second camera is also placed on
the plane of z = 0 at (−x,−y,0) with random perturba-
tions up to 0.3 in x- and y- coordinates. The cameras ran-
domly rotate with the constraint that both of their projec-
tion axes pass through the point (0,0,40) on the z-axis.
We assume pinhole models for the cameras, and that their
image planes are assumed to be placed between the cam-
era centers and the objects, with a unit distance from their
camera centers.

• Planes The planes are determined in the following way:
Each of them passes through a point on the z-axis:

(0,0,ð), where ð is a random value between 35 ∼ 45.
The angles between z-axis and the planes are between
45 ∼ 80 degrees. For each plane, 20 points randomly dis-
tribute in (−10 ∼ 10,−10 ∼ 10,∗), where the star sym-
bol “∗” means that the z-coordinate is determined by the
plane and the x- and y-coordinates. Note only those fea-
ture points in one plane that are not obscured by the other
two planar segments can be selected.

• Feature points With the knowledge of both cameras and
3D feature points in the planes, we can obtain 2D feature
points on two views. In order to make the simulation more
realistic, the feature points on two views are scaled so that
they are restricted in the region of (−256 ∼ 256,−256 ∼
256). A particular representative of the feature points in
one view is shown in Fig. 1.

• Noise 0-mean i.i.d. Gaussian noise is added to differ-
ent planes. In order to present an informative comparison
for the methods, mentioned above, we include situations
where the starting estimates of the homography of one
plane is estimated with less accuracy than the others. We
arbitrarily choose the third plane to be an estimate result-
ing from r times stronger noise. The different noise levels
are chosen as σ (0.5, 1, 1.5, 2 and 2.5), and different ra-
tio r as (1, 2, 3, 4 and 5).

• Performance evaluation In the following experiments/
simulations, we use the reprojection error as the index for
comparison. A commonly used index for evaluating the
estimated homography Ĥ is:

√∑p

i=1 d(xi , x̂i )2 + d(x′
i , x̂′

i )
2

2p
subject to x̂′

i ∼ Ĥx̂i ∀i

(19)

Fig. 1 The correlation coefficient between the direction of the esti-
mate t and its ground-truth data t̃
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where x̂ denotes the estimate of x. However, in all meth-
ods investigated here, we work only with homography co-
efficients and the algorithms do not compute estimates of
feature points, {x̂}. In order to overcome this difficulty, we
prefer to use the noise free data, if available, in compari-
son:
√∑p

i=1 d(x̄′
i , Ĥx̄i )2 + d(x̄i , Ĥ′x̄′

i )
2

2p
(20)

where x̄ denotes for the ground truth of x.
• Termination We terminate the iteration of the proposed

algorithm (or the BA algorithms (17)–(18)) when the
change of the objective function in (8) (or (17)–(18)) is
less than 10−10.

• Statistics In order to obtain enough data for the statis-
tics, we repeat 100 times for every setting (with a same
noise level σ and a same ratio of r).

In Fig. 2, the average error for the least noisy planes
(first two planes) is shown: In each sub-figure, the abscissa
is the ratio of the noise level of the third plane to that in
the first two planes and the ordinate is the average error.
In Fig. 3, the average error for the third plane is shown.
The main conclusion is that the proposed algorithm (and BA
of (18)) perform much better than the DLT algorithm. The
proposed algorithm performs only slightly worse than the
BA of (18).

We can also make several other side-observations. (a) As
mentioned in the beginning of this section, the BA algo-
rithm of (17) deteriorates when the noise levels in differ-
ent planes are different. Although the BA algorithm of (17)
has a smaller error than that of the DLT for the third plane
(see Fig. 3), it is obtained at the price of increasing the er-
ror for the first two planes, when the ratio is 2 to 5 (see
Fig. 2). The BA of (18) is generally better than the BA
of (17). (b) When the noise is not stronger, for example
from 0.5 to 1.5, the BA of (18), starting from the result from
the proposed one algorithm, is better than that starting from
the DLT.

For space limitations, we omit the results of our exper-
iments using four or five planes but the same conclusions
hold.

5.1.2 A Real Example: Model House

We use the Model House data (views, 2D and 3D points, and
projection matrices are available at http://www.robots.ox.
ac.uk/~vgg/data.html.), in particular the 8th and 9th views
(see Fig. 4). There are 168 matches on the two views. From
these 168 matches, four prominent planes are segmented
into: the front of the house, the roof of the house, the ground,
the side of the house, each with 50/51/18/37 matches: by the
RANSAC algorithm (Fischler and Rolles 1981).

Because the 3D points are available, we can (as a first
investigation) measure the error under controlled noise. The
measured 3D points, can be said to be on some plane but
only within some error tolerance. Thus, we first “purify”
(least squares fit) the 3D feature points so that they are ex-
actly on the appropriate plane. Then we project these “pu-
rified” 3D points using the projection matrices available, to
obtain the data with ground truth. Different levels of noise
is then added to these virtual feature points, as in Sect. 5.1.1
(in this case picking the plane of the side of the house to
have the differing noise level).

The experimental results are shown in Figs. 5 and 6.
We can draw essentially the same conclusions as those in
Sect. 5.1.1 except that, in this particular example, only the
samples of noise change from run to run, 2,500 runs in
total—the underlying noise-free data remains unchanged.
(Thus, the curves of BA-pro-0/BA-GT-0/BA-DLT-0 (and
BA-pro-1/BA-GT-1/BA-DLT-1) merge into one in Figs. 5
and 6. It seems that this configuration of data produces a
basin of attraction that includes all three starting points.)

5.1.3 Discussion

• It is noted (end of Sect. 4) that two initializations are used
to produce a more reliable solution in the proposed al-
gorithm in Sect. 4.2: the estimate t (derived by step 2 of
Sect. 4.2) and the fundamental matrix null vector. Here,
we give a numerical characterization of the reliability, in
terms of the convergence rate to the global optimum.

Actually, the global optimal solution of (8) is not
known in practice. This difficulty can be overcome by
utilizing the ground-truth data. The estimate, by starting
from the noise-free data, is assumed to be the global mini-
mum; and the estimates from the two initializations above
are regarded to converge to the global minimum if their
objective function after termination is near enough to the
global minimum.

It is found that the global minimum can be estimated in
almost all cases, by jointly using the two different initial-
izations above. In all 100×5×5×3 trials in Sects. 5.1.1,
5.1.2 (plus our synthetic planes experiments involving
4 planes, not detailed here) the global minimum is not
found only in 24 cases. In terms of the two initializations
separately, the global minimum is not found in 123/258
cases, respectively, by the two initializations mentioned
above. (Note that the proposed algorithm converges in all
cases, though with a few cases to non-global minimum.)

• Parameters for comparison? As noted in the experimental
setting in Sect. 5.1.1, the reprojection error in (20) is used
as the index for comparison. It may be thought that the
parameters R, t and {vi} in (17) and (18) (or u, d, t and
v in (8)) can be used as yardsticks as they have physical
interpretations.

http://www.robots.ox.ac.uk/~vgg/data.html
http://www.robots.ox.ac.uk/~vgg/data.html
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Fig. 2 Experimental result for 3-plane case: the first two planes. In b–f, the abscissa is the ratio of the noise level of the third plane to that in the
first two planes and the ordinate is the average error of the first two views

However, two of quantities in (17), (18) or (8) are

only members of equivalence classes: due to the over-

parametrization in formula (1). Formula (1) can be re-

formulated as Hi ∼ (R + t�vT ) + t(vT
i − �vT ), i.e.,
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Fig. 3 Experimental result for 3-plane case: the third plane. In a–e, the abscissa is the ratio of the noise level of the third plane to that in the first
two planes and the ordinate is the average error of the third view

R ← R + t�vT and vT
i ← vT

i − �vT is another re-

parameterization for a set of homographies. This over-

parametrization results in an indefinite number of repre-

sentations for a same set of homographies, in terms of R,
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Fig. 4 Two views of the Model
house

t and {vi} in (1). Consequently, it is impossible to evalu-
ate the estimated parameters, even if the ground truth data
is available.

Regarding the parameter t (the translation vector) we

can envisage an index for comparison: r = 〈t̃,t〉
‖t̃‖•‖t‖ , where

t̃ is the ground truth of the estimate t. Figure 1 shows a
plot of this quantity vs iteration count for a sample run
on the Model House data. From Fig. 1, it can be seen
the index r quickly reaches (and retains) a value of 1—
indicating close agreement to the ground truth. However,
this is not a practical measure (either for performance
evaluation or as a stopping criterion as, of course, we do
not know the ground truth in “real” applications.) More-
over, since it does not include any indication of the accu-
racy in terms of the other physically meaningful quanti-
ties, convergence in terms of this index does not necessar-
ily equate to convergence to the ground truth result.

5.2 Validation without Knowing/Using Ground Truth

In this section we use image feature points direct from fea-
ture detectors: to demonstrate the effects of “realistic” noise
distributions in the feature point locations—leading to real-
istic distributions of noise in the directly estimated homo-
graphies (without refinement). The “real” noise level will be
influenced by many factors—the noise in the feature point
locations, the spatial distribution of the feature points (more
widely spread should lead to greater accuracy), and the num-
ber of feature points (the greater these are in number, gener-
ally will be the less noise); for example.

In this series of experiments, since we do not know the
ground truth, we have to resort to demonstrating accuracy
through image residuals from homography mapping error.
That is, the difference between the second view and the pro-
jection of the first view on the second view is calculated (and
scaled up to 2 times); and the darker the pixel, the bigger the
difference. Note: the perceived accuracy is not only affected

by the actual accuracy but also by such things as the tex-
ture (it is hard to see errors in regions of low texture and,
conversely, in regions of high texture, small errors will look
large). Not also that these experiments omit the “GT” vari-
ants as we now have no relevant ground truth for this setting.

Firstly, we use the Desktop images shown in Fig. 7. There
are four planes: the computer screen, the table and two (right
and left) calendars. Points are detected with the Harris cor-
ner detector and matched by hand. The four planes have 61,
17, 10 and 14 points, respectively. The back-projections
of homographies are shown in Figs. 8–11: DLT, proposed,
BA-pro-0, BA-DLT-0, BA-pro-1 and BA-DLT-1. As a sec-
ond series of experiments using the model house data, we
estimate the homographies, using real image feature point
data (not our “purified” points with synthetic noise used in
Sect. 5.1.2). The back-projection of the first view on the sec-
ond view is shown in Figs. 12–15.

The main conclusion is that DLT performs worse, as ex-
pected, than any of the refinement methods. This is particu-
larly evident in all planes from the Desktop images (except
the computer screen) and in the house-side plane (Fig. 15).
For the computer screen, there are a significant number of
matched points (indeed, for the other planes in the Desktop
scene there are so few matches that it is not surprising that
the DLT estimate is poor). In other words, by refinement,
one can generally “get away” with using less points on one
or more of the planes, as the inaccuracy will be reduced by
the enforcement of coherence amongst all homography esti-
mates.

Visual inspection of pixel residuals does not always re-
veal small discrepancies: it is hard to distinguish the qual-
ity improvement amongst the refinement methods (ours and
the variants of bundle adjustment) but clearly our method
is competitive. Nonetheless, we have demonstrated, by the
visual improvements on most planes, that the refinement
methods, ours and bundle adjustment, can improve homog-
raphy estimation even in situations using a few planes for
the refinement.
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Fig. 5 Experimental result for the house model: the three planes with equal noise added (roof, ground, front). In b–f, the abscissa is the ratio of
the noise level of the fourth plane to that in the first three planes and the ordinate is the average error of the first three views
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Fig. 6 Experimental result for the house model: the plane with more added noise (side of the house). In a–e, the abscissa is the ratio of the noise
level of the fourth plane to that in the first three planes and the ordinate is the average error of the fourth view
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Fig. 7 Two views of the
desktop

Fig. 8 Experimental result for
the plane of computer screen

Fig. 9 Experimental result for
the plane on the table

5.3 Complexity Analysis

Recall (Golub and Loan 1996) that the complexity of solv-
ing a linear equation Ax = b, with A ∈ Rm,n (m ≥ n), is
of O(mn2).

The main computational burden of the proposed algo-
rithm lies in the core algorithm. Taking into account of the

fact that the noise in each homography is independent of

that in another homography, computing t, v, u and d in (9)

involves solving 9n × 3 linear equations, n 9 × 3 equations,

a 9n × 9 and n 9 × 1 equations, respectively; and their com-

plexity is O(9n × 32), O(n × 9 × 32), O(9n × 92) and

O(n×9), respectively. Thus the overall complexity is O(n).
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Fig. 10 Experimental result for the plane of the right calendar

Fig. 11 Experimental result for the plane of the left calendar

One iteration of the BA algorithm involves solving a
(12 + 3n) × (12 + 3n) linear equation and constructing the
(12 + 3n) × (12 + 3n) Hessian matrix. The solution of the
(12 + 3n) × (12 + 3n) linear equation has a complexity of
O((3n + 12)3), and the construction of the Hessian matrix
has a complexity of O(

∑
i pi(3n + 12)2), where pi is the

Fig. 12 Experimental result for the plane of the front wall. The reader
should ignore all parts of the image except the region of the front wall

number of feature points in the ith plane. The complexity of
using the DLT algorithm to compute the ith homography is
O(2pi92), and for n homographies, is O(2

∑
i pi92).

Obviously, the DLT algorithm runs much faster than the
other two.

This complexity analysis would suggest that our method
should outperform the BA algorithm, in terms of speed, for
large n. However, it would be disingenuous to put stress on
this as a virtue of our scheme, as we have emphasized the
practical need to address a modest number of homographies.

In terms of empirical running speed, in our code, our
method is about twice as slow as BA. However, we have
made no attempt to optimize our code and the minimiza-
tion code of BA is, presumably, from a highly optimized
library. All we can conclude is that our algorithm is roughly
competitive in speed (unoptimized) and may be made more
competitive if effort is put into optimization.
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Fig. 13 Experimental result for
the plane of the ground floor.
The reader should ignore all
parts of the image except the
region of the ground

Fig. 14 Experimental result for
the roof plane. The reader
should ignore all parts of the
image except the roof

6 Conclusion

In this paper, we study how to jointly estimate ≥ 3 homogra-
phies over two views. There are three major contributions.
First, the dimension-three affine homography subspace can
be calculated from ≥ 3 homographies, which is contrary
to the naive view that four homographies are needed to do

this; more importantly, the homography matrix can be de-
composed into the “combination” of two rank-one matri-
ces so that more constraints are available to reliably im-
prove homography accuracy, in cases with a realistic number
of planes. Second, we show how to estimate the subspace
constrained homography. Third, we show how to statisti-
cally improve the joint estimation of several homographies.
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Fig. 15 Experimental result for the plane of the side wall. The reader
should ignore all parts of the image except the side wall

Combining these principles, can produce an algorithm that
greatly improves over separately estimating the homogra-
phies. Indeed, compared with the “gold standard” of bun-
dle adjustment (when starting from a “good” starting point),
our experiments show that our method is close to the re-
sult of that “gold standard”. Our method (like bundle adjust-
ment) is iterative but provably convergent (albeit to a local
minimum). Experimentally, we demonstrate that it generally
converges to a very good (perhaps global) minimum with at
most two starting points (particular choices proposed as part
of our strategy).

We should emphasize that we are not claiming that we
have produced an algorithm that unequivocally outperforms
the current “state of the art” (BA initialized from DLT). In-
deed, compared with that, our accuracy gains can be modest
(though reliably better on average). Such gains come, cur-
rently, by at least as much computational cost (which may
be improved, however, by careful crafting of the implemen-
tation).

One might even consider a practical algorithm using BA
initialized by our approach. Indeed, a particularly useful sce-
nario may be to use our algorithm, test the accuracy and if
still not accurate enough, attempt to further refine through
BA. Moreover, we have shown the end result is generally
better than BA initialized by DLT and very close to the best
one can hope for by any variant of initializing BA (as shown
by comparing against that initialized through the ground
truth data).

The contributions of this paper extend beyond that of
proposing an algorithm. We have shown why the naive ap-
proach of direct rank-constraint is doomed to produce mod-
est improvement. We have shown how there are further rank
constraints to take advantage of. Thus we have added to the
understanding of rank-constraints in the homography esti-
mation setting.
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Appendix A: Definition of the Matrix Mi,j in (4)

Suppose two homographies with matrix representations Hi

and Hj are estimated, up to different unknown scales (all
that can be done in practice): Hi ∼ (R + tvT

i ) and Hj ∼
(R + tvT

j ).
Note: there exist two independent 3-vectors li =

[li,x li,y li,z]T , for i = 1,2, that span t⊥ (i.e., span{l1, l2} =
t⊥), where t⊥ denotes the dimension-two subspace that is
perpendicular to the vector t, and further

lT Hi ∼ lT Hj (21)

where l = [lx ly lz]T = c1l1 + c2l2 ∈ span{l1, l2}.
From (21), their cross product is a zero vector, i.e.,

[HT
i l]×HT

j l = 0, for any c1 and c2. In column vector no-
tation, we write the cross product as:

Mi,j L = 0 (22)
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where [L]6×1 = [l2
x l2

y l2
z lx ly lx lz ly lz]T and Mi,j (size

3 × 6) is defined below.

Mi,j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1,ih2,j − h1,j h2,i h4,ih5,j − h4,j h5,i

h7,ih8,j − h7,j h8,i M
1,4
i,j M

1,5
i,j M

1,6
i,j

h1,ih3,j − h1,j h3,i h4,ih6,j − h4,j h6,i

h7,ih9,j − h7,j h9,i M
2,4
i,j M

2,5
i,j M

2,6
i,j

h2,ih3,j − h2,j h3,i h5,ih6,j − h5,j h6,i

h8,ih9,j − h8,j h9,i M
3,4
i,j M

3,5
i,j M

3,6
i,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

M
1,4
i,j = h1,ih5,j − h1,j h5,i + h4,ih2,j − h4,j h2,i ,

M
1,5
i,j = h1,ih8,j − h1,j h8,i + h7,ih2,j − h7,j h2,i ,

M
1,6
i,j = h4,ih8,j − h4,j h8,i + h7,ih5,j − h7,j h5,i ,

M
2,4
i,j = h1,ih6,j − h1,j h6,i + h4,ih3,j − h4,j h3,i ,

M
2,5
i,j = h1,ih9,j − h1,j h9,i + h7,ih3,j − h7,j h3,i ,

M
2,6
i,j = h4,ih9,j − h4,j h9,i + h7,ih6,j − h7,j h6,i ,

M
3,4
i,j = h2,ih6,j − h2,j h6,i + h5,ih3,j − h5,j h3,i ,

M
3,5
i,j = h2,ih9,j − h2,j h9,i + h8,ih3,j − h8,j h3,i ,

and

M
3,6
i,j = h5,ih9,j − h5,j h9,i + h8,ih6,j − h8,j h6,i .

Appendix B: Proof that Matrix M in (4) Has a Rank of
Three

Define

[L1]6×1 = [l2
1,x l2

1,y l2
1,z l1,x l1,y l1,x l1,z l1,y l1,z]T ,

[L2]6×1 = [l2
2,x l2

2,y l2
2,z l2,x l2,y l2,x l2,z l2,y l2,z]T

and

[L1,2]6×1 = [2l1,x l2,x 2l1,y l2,y 2l1,zl2,z l1,x l2,y

+ l2,x l1,y l1,x l2,z + l2,x l1,z l1,y l2,z

+ l2,y l1,z]T .

As special cases of (22), we note that: Mi,j L1 = 0
and Mi,j L2 = 0. Since L = c2

1L1 + c2
2L2 + c1c2L1,2 and

Mi,j L = 0 holds for any c1, c2, Mi,j L1,2 = 0 also holds.
Obviously, L1 and L2 are independent. In addition, from

the definition of L (immediately following (22)), L = 0 iff
lx = ly = lz = 0, i.e., l = 0. Moreover, because l1 and l2 are

independent, l = 0 iff c1 = c2 = 0. Thus, L1, L2 and L1,2

are independent vectors.
Combining these facts, there exists a dimension-three

subspace: span{L1,L2,L1,2}, which is contained in the
null space of Mi,j for i < j . span{L1,L2,L1,2} is con-
tained in the null space of M, because the subspace of
span{L1,L2,L1,2} is independent of c1 and c2.

Thus, rank(M) ≤ 6 − 3, because M has a width of
six. Assuming non-degeneracy (the planes are not parallel)
rank(M) = 3.

Appendix C: Proof that t is the Left Null Vector of S
in (5)

In practice, we calculate the dimension-three null space of
M up to a nonsingular 3 × 3 transform Y. That is, the basis
vectors spanning the null-space are: [N]6×3 = [n1 n2 n3] =
[L1 L2 L1,2]6×3[Y]3×3. Each column of N is arranged as a
3 × 3 matrix Ni , as defined in (6).

Now, we prove that tT Ni = 0.
If Y is an identity matrix, i.e., Y = I3, N ′

i = lTi li for (i =
1,2), and N ′

3 = lT1 l2 + lT2 l1. Then tT N ′
i = 0 holds for i =

1,2,3, because of li ∈ t⊥ for i = 1,2. For any nonsingular
Y, Ni = ∑3

k=1 yk,i N ′
k , because the column of N is a linear

combination of L1, L1 and L1,2. Thus tT Ni = 0 also holds.
In order to make full use of the available data, we juxta-

pose Ni as:

[S]3×9 = [N1 N2 N3]3×9

= [l1lT1 l2lT2 l1lT2 + l2lT1 ]3×9[(Y ⊗ I3)]9×9 (23)

Because rank(A ⊗ B) = rank(A)rank(B), Y ⊗ I3 has a
full rank of nine. [l1lT1 l2lT2 ] has a rank of two because l1
and l2 are independent, and t is its unique left null vector. So
rank(S) ≥ 2. Also, tT S = 0 and consequently rank(S) ≤ 2.
Thus, S has a rank of two and the solution of t, up to an
unknown scale, is the left null vector of S.

Appendix D: Error in Homography Coefficients

In this appendix, we summarize the results in Chen and
Suter (2008), showing how to compute the covariance ma-
trix of the error in homography coefficients. The aim of the
statistical analysis in Chen and Suter (2008) is to represent
the error in the homography parameters in terms of the ran-
dom variables of {εi,1, εi,2, ε

′
i,1, ε

′
i,2} for (1 ≤ i ≤ n), which

are the errors in the coordinates of 2D feature matches:

ηk(hk) = �hk
e (24)

where [e]4n×1 = [ε1,1 ε1,2 ε′
1,1 ε′

1,2 . . . εn,1 εn,2 ε′
n,1 ε′

n,2]T .
η(•) here is used to denote the error in the quantity •.
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From (24), we can then arrive at our required covariance
matrix

Chk
= �hk

��T
hk

(25)

where � is the 4n × 4n covariance matrix for the noise e
in the image points. In the special case, where i.i.d. 0-mean-
σ 2-variance Gaussian (feature point) noise is assumed, the
error covariance matrix in the homography is

Chk
= σ 2�hk

�T
hk

(26)

Furthermore, the noise level σ can be accurately esti-
mated by employing first-order approximation techniques
(Chen and Suter 2008).

Appendix E: Error in the Matrix M in (4)

The error in the matrix M in (4) can not be considered as
i.i.d. Gaussian, due to two reasons: the heteroscedastic error
in the homography parameters and the non-linearity intro-
duced in the calculation of M.

Writing the error in each homography hi as ηi =
[ηi,1 . . . ηi,9]T , and collecting to form the error in the n

homographies: η = [ηT
1 . . . ηT

n ]T . The errors in each ho-
mography are assumed to be of zero mean and independent
from those in another homography.

Unlike the homography matrix, the errors in the matrix
M can not be considered to be column independent (thus
they are both row and column dependent). We arrange the
3C2

n ×6 matrix M as a 18C2
n ×1 vector: vec(MT ). The error

in this vector, denoted by ζ , is related to the error in the
homographies by:

ζ = 
η (27)

where 
 is an 18C2
n × 9n matrix,


 = [

T

1,2 . . . 
T
1,n 
T

2,3 . . . 
T
2,n . . . 
T

n−1,n

]T (28)

and with the 18 × 9n matrix: 
i,j given at the end of this
appendix.

From (27), the covariance matrix of ζ is

Cζ = 
E(ηηT )
T (29)

where E(ηηT ) is a block diagonal matrix: E(ηηT ) =
diag{E(ηiη

T
i )} because ηi is independent of ηj for i �= j .

The covariance matrix E(ηiη
T
i ) can be calculated from

the feature points while calculating the homography—
see (25) and (26).


i,j =
⎡
⎣

06,9(i−1) φi,j,1,2 06,9(j−i−1) φi,j,1,4 06,9(n−j)

06,9(i−1) φi,j,2,2 06,9(j−i−1) φi,j,2,4 06,9(n−j)

06,9(i−1) φi,j,3,2 06,9(j−i−1) φi,j,3,4 06,9(n−j)

⎤
⎦

where

φi,j,1,2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h2,j −h1,j 0 0 0 0 0 0 0

0 0 0 h5,j −h4,j 0 0 0 0

0 0 0 0 0 0 h8,j −h7,j 0

h5,j −h4,j 0 h2,j −h1,j 0 0 0 0

h8,j −h7,j 0 0 0 0 h2,j −h1,j 0

0 0 0 h8,j −h7,j 0 h5,j −h4,j 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

φi,j,1,4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−h2,i h1,i 0 0 0 0 0 0 0

0 0 0 −h5,i h4,i 0 0 0 0

0 0 0 0 0 0 −h8,i h7,i 0

−h5,i h4,i 0 −h2,i h1,i 0 0 0 0

−h8,i h7,i 0 0 0 0 −h2,i h1,i 0

0 0 0 −h8,i h7,i 0 −h5,i h4,i 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

φi,j,2,2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h3,j 0 −h1,j 0 0 0 0 0 0

0 0 0 h6,j 0 −h4,j 0 0 0

0 0 0 0 0 0 h9,j 0 −h7,j

h6,j 0 −h4,j h3,j 0 −h1,j 0 0 0

h9,j 0 −h7,j 0 0 0 h3,j 0 −h1,j

0 0 0 h9,j 0 −h7,j h6,j 0 −h4,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

φi,j,2,4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−h3,i 0 h1,i 0 0 0 0 0 0

0 0 0 −h6,i 0 h4,i 0 0 0

0 0 0 0 0 0 −h9,i 0 h7,i

−h6,i 0 h4,i −h3,i 0 h1,i 0 0 0

−h9,i 0 h7,i 0 0 0 −h3,i 0 h1,i

0 0 0 −h9,i 0 h7,i −h6,i 0 h4,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

φi,j,3,2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 h3,j −h2,j 0 0 0 0 0 0

0 0 0 0 h6,j −h5,j 0 0 0

0 0 0 0 0 0 0 h9,j −h8,j

0 h6,j −h5,j 0 h3,j −h2,j 0 0 0

0 h9,j −h8,j 0 0 0 0 h3,j −h2,j

0 0 0 0 h9,j −h8,j 0 h6,j −h5,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

φi,j,3,4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −h3,i h2,i 0 0 0 0 0 0

0 0 0 0 −h6,i h5,i 0 0 0

0 0 0 0 0 0 0 −h9,i h8,i

0 −h6,i h5,i 0 −h3,i h2,i 0 0 0

0 −h9,i h8,i 0 0 0 0 −h3,i h2,i

0 0 0 0 −h9,i h8,i 0 −h6,i h5,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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